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Abstract
Large scale sketch-based 3D shape retrieval has received more andmore attentions in the community of content-
based 3D object retrieval. The objective of this track is to evaluate the performance of different sketch-based 3D
model retrieval algorithms using a large scale hand-drawn sketch query dataset on a comprehensive 3D model
dataset. The benchmark contains 12,680 sketches and 8,987 3D models, divided into 171 distinct classes. In this
track, 12 runs were submitted by 4 groups and their retrieval performance was evaluated using 7 commonly
used retrieval performance metrics. We hope that this benchmark, the comparative evaluation results and the
corresponding evaluation code will further promote the progress of this research direction for the 3D model
retrieval community.

Categories and Subject Descriptors(according to ACM CCS): H.3.3 [Computer Graphics]: Information Systems—
Information Search and Retrieval

1. Introduction

Sketch-based 3D model retrieval targets retrieving a list of
3D models based on sketch input. Compared to the schemes
of Query-by-Model, it is more intuitive and convenient for
even novice users to learn and search for relevant models. It
also has many applications including sketch-based modeling
and recognition, and sketch-based 3D animation [TWLB09].

In SHREC’12 [LSG∗12] and SHREC’13 [LLG∗13],
two tracks have been successfully organized on the topic
of sketch-based 3D model retrieval. They foster this re-
search area by providing a small-scale and a large-scale

† Track organizers. For any questions related to the track, please
contact sketch@nist.gov or li.bo.ntu0@gmail.com.
‡ Track participants.

sketch-based retrieval benchmark respectively and attract-
ing state-of-the-art algorithms to participate and compete
each other. However, even the large scale SHREC’13 Sketch
Track Benchmark (SHREC13STB) [LLG∗13] based on
Eitz et al. [EHA12] and Princeton Shape Benchmark (PSB)
[SMKF04] contains only 90 classes of 7,200 sketches and
1,258 models. Compared with the complete dataset of 250
classes built in Eitz et al. [EHA12], there is still much room
left for further improvement to make it more comprehensive
in terms of completeness of object classes existing in the
real world. Thus, it is highly necessary to build up an even
larger sketch-based 3D retrieval benchmark in terms of both
sketches and models to help us to further evaluate the scala-
bility of existing or newly developed sketch-based 3D model
retrieval algorithms.

Considering this, we built a SHREC’14 Large Scale
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Sketch Track Benchmark (SHREC14LSSTB) by extend-
ing theSHREC13STB [LLG∗13] by means of identifying
and consolidating relevant models for the 250 classes of
sketches from the major previously proposed 3D object re-
trieval benchmarks. These previous benchmarks have been
compiled with different goals in mind and to date, not been
considered in their sum. Our work is the first to integrate
them to form a new, larger benchmark corpus for sketch-
based retrieval.

Specifically, besides the PSB used inSHREC13STB,
the other available 3D model benchmark sources consid-
ered include the SHREC’12 Generic Track Benchmark
(SHREC12GTB) [LGA∗12], the Toyohashi Shape Bench-
mark (TSB) [TKA12], the Konstanz 3D Model Bench-
mark (CCCC) [Vra04], the Watertight Model Bench-
mark (WMB ) [VtH07], the McGill 3D Shape Benchmark
(MSB) [SZM∗08], Bonn’s Architecture Benchmark (BAB)
[WBK09], and the Engineering Shape Benchmark (ESB)
[JKIR06]. Fig. 1 shows some example models for the four
specific benchmarks. Totally, this large-scale benchmark
has 13,680 sketches and 8,987 models, classified into 171
classes.

Figure 1: Example 3D models inESB, MSB, WMB and
BAB datasets.

Based on this new benchmark, we organize this track to
further foster this challenging research area by soliciting re-
trieval results from current state-of-the-art retrieval methods
for comparison, especially in terms of scalability. We also
provide corresponding evaluation code for computing a set
of performance metrics similar to those used in the Query-
by-Model retrieval technique.

2. Data Collection

Our extended large scale sketch-based 3D model re-
trieval benchmark† is motivated by a latest large collec-
tion of human-drawn sketches built by Eitz et al. [EHA12]

† Available on http://www.itl.nist.gov/iad/vug/
sharp/contest/2014/SBR/.

and SHREC’13 Sketch Track Benchmark (SHREC13STB)
[LLG∗13].

To explore how human draw sketches and human sketch
recognition, Eitz et al. [EHA12] collected 20,000 human-
drawn sketches, categorized into 250 classes, each with 80
sketches. This sketch dataset is exhaustive in terms of the
number of object categories. More importantly, it avoids the
bias issue since they collect the same number of sketches for
every class and the number of sketches for one class is also
adequate for a large scale retrieval benchmark. The sketch
variation within one class is also adequate enough.

SHREC13STB[LLG∗13] has found 1,258 relevant mod-
els for 90 of the total 250 classes from the PSB benchmark.
However, it is not complete and large enough. A majority
of 160 classes has not been included. Thus, we believe a
new sketch-based 3D model retrieval benchmark based on
the above two datasets, but extended by finding more models
from other 3D data sources will be more comprehensive and
appropriate for the evaluation of a sketch-based 3D model
retrieval algorithm, especially for the property of scalability
which is very important for practical applications.

Considering this and to build up a better and more com-
prehensive large-scale sketch-based 3D retrieval benchmark,
we extend the search to other available benchmarks, as men-
tioned above. We have found 8,987 models for 171 classes
(for the remaining 79 classes we did not find relevant models
in the selected benchmarks), which substantially increase the
scale of the benchmark and form the currently largest scale
sketch-based retrieval benchmark. We (one undergraduate
student, one master student, one researcher with a master de-
gree and one with a PhD degree) adopted a voting scheme to
classify models. For each classification, we have at least two
votes. If these two votes agree each other, we confirm that
the classification is correct, otherwise, we perform a third
vote to finalize the classification. This benchmark provides
an important resource for the community of sketch-based 3D
retrieval and will foster the development of practical sketch-
based 3D retrieval applications. Fig.2 shows several exam-
ple sketches and their relevant models.

Figure 2: Example 2D sketches and their relevant 3D mod-
els in the benchmark.

We randomly select 50 sketches from each class for train-
ing and use the remaining 30 sketches per class for testing,
while the relevant models as a whole remain as the target
dataset. Participants need to submit results on the training
and testing datasets, respectively. To provide a complete ref-
erence for the future users of our benchmark, we will eval-
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uate the participating algorithms on both the testing dataset
and the complete benchmark.

2.1. 2D Sketch Dataset

The 2D sketch query set contains 13,680 sketches (171
classes, each with 80 sketches) from Eitz et al.’s [EHA12]
human sketch recognition dataset, each of which has rele-
vant models in the selected 3D benchmarks.

2.2. 3D Model Dataset

In total, the 3D model dataset in this benchmark con-
tains 8,987 models classified into 171 classes. On av-
erage, each class has around 53 models. Each model
is saved in .OFF format as a text file. The same 3D
dataset was also used in evaluating generic 3D shape re-
trieval algorithms in the SHREC’14 track on comprehen-
sive 3D shape retrieval (http://www.itl.nist.gov/
iad/vug/sharp/contest/2014/Generic3D/).

2.3. Ground Truth

All the sketches and models are categorized according to the
classifications in Eitz et al. [EHA12] and the selected source
benchmarks, respectively. In our classification and evalua-
tion, we adopt the class names in Eitz et al. [EHA12].

3. Evaluation

To have a comprehensive evaluation of the retrieval algo-
rithm, we employ seven commonly adopted performance
metrics [SMKF04,SHR14] in Information Retrieval Evalua-
tion that are also widely used in the 3D model retrieval field.
They are Precision-Recall (PR) diagram, Nearest Neighbor
(NN), First Tier (FT), Second Tier (ST), E-Measures (E),
Discounted Cumulated Gain (DCG) and Average Precision
(AP). We also have developed the code [SHR14] to compute
them.

4. Participants

Four groups have participated in the SHREC’14 track on
Extended Large Scale Sketch-Based 3D Shape Retrieval. 12
rank list results (runs) for 6 different methods developed by 4
groups have been submitted. The participants and their runs
are listed as follows:

• BF-fGALIF, CDMR (σSM=0.1, α=0.6), CDMR
(σSM=0.1, α=0.3), CDMR (σSM=0.05, α=0.6), and
CDMR (σSM=0.05, α=0.3) submitted by Takahiko
Furuya and Ryutarou Ohbuchi from the University of
Yamanashi, Yamanashi, Japan (Section5.1)

• SBR-VC (α=1) andSBR-VC (α = 1
2) submitted by Bo Li

and Yijuan Lu from Texas State University, USA; Henry
Johan from Fraunhofer IDM@NTU, Singapore; and Mar-
tin Burtscher from Texas State University, USA (Sec-
tion 5.2)

• OPHOGandSCMR-OPHOGsubmitted by Atsushi Tat-
suma and Masaki Aono from Toyohashi University of
Technology, Japan (Section5.3)

• BOF-JESC (Words800_VQ), BOF-JESC (Words1000
_VQ), andBOF-JESC (FV_PCA32_Words128)submitted
by Changqing Zou from Chinese Academy of Sciences,
China; Hongbo Fu from the City University of Hong
Kong, China; and Jianzhuang Liu from Huawei Technolo-
gies Co. Ltd., China (Section5.4)

5. Methods

5.1. Ranking on Cross-Domain Manifold for
Sketch-based 3D Model Retrieval, by T. Furuya
and R. Ohbuchi

To compare a hand-drawn sketch to a 3D model, most of
existing methods compare a sketch with a set of multi-
view rendered images of a 3D model. However, there is a
gap between sketches and rendered images of 3D models.
As hand-drawn sketches contain “noise”, such as shape ab-
straction, semantic influence, stylistic variation, and wobbly
lines, these sketches are often dissimilar to rendered images
of 3D models.

Our algorithm employs an unsupervised distance metric
learning to partially overcome the gap between sketches
and 3D models [LLG∗14] [FO13]. Our algorithm called
Cross-Domain Manifold Ranking, or CDMR [FO13], tries
to bridge the gap between features extracted in two hetero-
geneous domains, i.e., domain of sketches and domain of
rendered images of 3D models. While the CDMR algorithm
could perform in either an unsupervised, semi-supervised, or
supervised mode, we use unsupervised CDMR for this track.

Figure 3 shows an overview of the CDMR. It first cre-
ates two separate manifolds of features, i.e., a manifold of
sketch features and a manifold of 3D model features. The
feature manifolds are computed by using an algorithm best

Figure 3: Feature comparison using Unsupervised Cross-
Domain Manifold Ranking (CDMR).
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suited for each of the domains; BF-fGALIF [FO13] (slightly
modified BF-GALIF [ERB∗12]) is used to compare sketches
and BF-DSIFT [FO09] is used to compare 3D models. These
two feature manifolds are then inter-linked to form a Cross-
Domain Manifold (CDM) by using an algorithm capable of
sketch-to-3D comparison, that is, the BF-fGALIF. Using the
CDM, similarity values between a sketch query and 3D mod-
els are computed by diffusing relevance on the CDM. The
relevance originates from the query, and it diffuses towards
3D models via edges of the CDM by using a process iden-
tical to Manifold Ranking [ZWG∗04]. The higher the rele-
vance value of a 3D model, the closer it is to the query.

Unlike previous sketch-to-3D model comparison algo-
rithms, the CDMR tries to maintain manifolds of sketches
and 3D models. This often positively contributes to ranking
accuracy. Also, if a large enough number of sketches and
their inter-similarity values are available, the CDMR per-
forms a form of automatic query expansion on the manifold
of sketches.

5.1.1. Forming a Cross Domain Manifold

A CDM is a graph, whose vertices are either sketches or 3D
models. The CDM graphW is represented by a matrix hav-
ing size(Ns+Nm)× (Ns+Nm), whereNs andNm are the
number of sketches and 3D models in a database respec-
tively. For this track,Ns = 13,680 andNm = 8,987.

The element of the matrixW, i.e.,W i j , indicates similar-
ity between a sketch (or a 3D model)i and a sketch (or a 3D
model) j. (For details, please refer to [FO13].) Distances are
computed for each pair of verticesi and j by using the fea-
ture comparison methods i.e., BF-fGALIF and BF-DSIFT.
The distances are then converted into similarities by using
the following equation whered(i, j) is distance between ver-
ticesi and j.

W i j =

{
exp(−d(i, j)/σ) if i 6= j

0 otherwise

The parameterσ controls diffusion of relevance value
across the CDM. We use different valuesσSS, σMM , and
σSM to compute sketch-to-sketch similarity, 3D model-to-
3D model similarity, and sketch-to-3D model similarity, re-
spectively. These similarity values must be computed either
by feature similarity or semantic similarity (if available.)

As mentioned above, sketch-to-3D model comparison
uses BF-fGALIF algorithm [LLG∗14] [FO13], which is
a slightly modified version of BF-GALIF [ERB∗12]. BF-
fGALIF compare a sketch and multi-view rendered images
of a 3D model by using sets of Gabor filter-based local fea-
tures. A 3D model is rendered into Suggestive Contour (SC)
[DFRS03] images from multiple viewpoints. The sketch
image and the SC images of the 3D model are rotation-
normalized by using responses of multi-orientation Gabor

filters computed of the image. After normalizing for rota-
tion, fGALIF features are densely extracted from the image.
The set of fGALIF features are integrated into a feature vec-
tor per image by using Bag-of-Features (BF) approach. A
BF feature of the sketch is compared against a set of per-
view BF features of the 3D model to find a distance between
the sketch and the 3D model.

For sketch-to-sketch comparison, BF-fGALIF features
are extracted from the sketches. Unlike the BF-fGALIF for
sketch-to-3D model comparison, the BF-fGALIF for sketch-
to-sketch comparison does not perform rotation normaliza-
tion. This is because most of the sketches drawn by human
beings are aligned to a canonical orientation.

To compare 3D models, we use the BF-DSIFT [FO09]
algorithm. It is also a view-based algorithm. A set of multi-
scale, rotation-invariant local visual features is densely ex-
tracted from multi-view rendered range images of a 3D
model. The set of local visual features is then BF-integrated
per 3D model for comparison.

5.1.2. Ranking on the Cross Domain Manifold

After generatingW representing a CDM, Manifold Ranking
(MR) algorithm [ZWG∗04] is applied onW to diffuse rele-
vance value over the CDM from a query. We use the closed
form of the MR (equation (1)) to find relevance values inF
given “source” matrixY. In equation (1),I is an identity ma-
trix andS is a symmetrically normalized matrix ofW andα
is a parameter.Fi j is the relevance value of the 3D modelj
given the sketchi. A higher relevance means a smaller dis-
tance.

F = (I −αS)−1Y (1)

Among the parameters for the CDMR (i.e.,σSS, σMM ,
σSM andα), we fixedσSSto 0.02 andσMM to 0.005 through
preliminary experiments. However, forσSM and α), we
could not tune these values since ground truth was not avail-
able for the experiments. We tried the following combina-
tions of the parameters; (σSM, α) = (0.1, 0.6), (0.1, 0.3),
(0.05, 0.6), (0.05, 0.3), which may not be optimal and might
decrease retrieval accuracy compared to the method without
CDMR, i.e, BF-fGALIF.

5.2. Efficient Sketch-Based 3D Model Retrieval Based
on View Clustering and Parallel Shape Context
Matching (SBR-VC) [LLJ13] [LLG ∗13] [LLG ∗14],
by B. Li, Y. Lu, H. Johan, and M. Burtscher

The SBR-VC algorithm first clusters a set of sample views
of each model into an appropriate number of representa-
tive views, according to its visual complexity defined as the
viewpoint entropy distribution of its sample views. Next, an
efficient parallel relative shape context matching [BMP02]
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Figure 4: Overview of the SBR-VC algorithm: the first row
is for the precomputation whereas the second row is for the
retrieval stage [LLG∗13] [ LLG∗14].

algorithm is employed to compute the distances between a
2D sketch and the representative silhouette views of a 3D
model. Before retrieval, the relative shape context features
of the representative views of all 3D target models are pre-
computed. Figure4 presents an overview of the algorithm,
which is described in more detail below.

5.2.1. Precomputation

(1) Viewpoint entropy-based adaptive view clustering.
This clustering is performed in four steps. For each 3D
model, the first step computes the viewpoint entropy of 81
views that are sampled by subdividing a regular icosahedron
using the Loop subdivision rule. The second step calculates
the viewpoint entropy-based 3D visual complexity for each
model. The mean and standard deviation entropiesm ands
of all sample views of each 3D model are computed first.
The 3D visual complexity of each model is defined as

C =

√
ŝ2+ m̂2

2
, (2)

whereŝ andm̂ are the entropiess andm normalized relative
to their maximum and minimum over all the models. Hence,
C ∈ [0,1]. This metric has the ability to quantitatively mea-
sure the semantic difference between models belonging to
different categories. In the third step, the visual complexity
C of a 3D model is utilized to determine the number of rep-
resentative views

Nc = ⌈α ·C ·N0⌉ , (3)

whereα is a constant andN0 is the number of sample views
for each 3D model.N0 is 81 in the presented SBR-VC al-
gorithm. For large-scale retrieval,α is chosen as 1 or12 ,
which corresponds to an average of 18.5 or 9.5 represen-
tative views, respectively, for each model in the dataset. The
fourth step applies Fuzzy C-Means view clustering to the
viewpoint entropy values of the 81 sample views, together
with their viewpoint locations, to generate the representative
views for each model.

(2) Feature view generation. Outline feature views for
the 2D sketches and the 3D models are generated. In the 3D

case, silhouette views are first rendered followed by outline
feature extraction. In the 2D case, silhouette views are gen-
erated based on binarization, Canny edge detection, closing,
dilation, and hole filling.

(3) Relative shape context computation. Rotation-
invariant relative shape context features [BMP02] are ex-
tracted to represent both sketches and sample views. 50 fea-
ture points are uniformly sampled for each outline feature
view based on cubic B-Spline interpolation.

5.2.2. Online retrieval

With a 2D query sketch, a target 3D database, and the pre-
computed relative shape context features of the represen-
tative views of each model, the online retrieval algorithm
works as follows.

(1) Sketch feature extraction. First, an outline feature
view of the 2D sketch is generated. Then, its relative shape
context features are computed.

(2) 2D-3D distance computation. The relative shape
context matching between the sketch and each representative
view of a model is performed in parallel. The minimum 2D-
3D matching cost is chosen as the sketch-model distance.

(3) 2D-3D distance ranking. The sketch-model distances
are sorted in ascending order and the models are ranked ac-
cordingly.

SBR-VC (α = 1) and SBR-VC (α = 1
2) represent two

runs of the SBR-VC algorithm with correspondingα val-
ues. The 70x performance speedup achieved over the serial
code [LLG∗13] is mainly due to the parallelization and code
optimization of the relative shape context matching algo-
rithm.

5.3. Overlapped Pyramid of HOG and Similarity
Constrained Manifold Ranking, by A. Tatsuma and
M. Aono

!"#"$%&! !"#"$%'! !"#"$%(!

Figure 5: Overview of the Overlapped Pyramid of HOG.

We propose a new feature vector known as Overlapped
Pyramid of Histograms of Orientation Gradients (OPHOG)
which is an extended version of pyramid of histograms of
orientation gradients [BZM07] proposed in the field of im-
age classification. An overview of the proposed OPHOG is
illustrated in Figure5. OPHOG divides an image into over-
lapped cells by stages, and extracts an orientation histogram
from each cell.
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We perform preprocessing to a 3D model and a sketch
image before extracting OPHOG features. In the preprocess-
ing of the 3D model, we generate depth buffer images with
300×300 resolution from the 102 viewpoints that are com-
posed of the vertices of a unit geodesic sphere. To obtain
a sketch-like image, we apply Laplacian filtering, thinning
transformation and Gaussian filtering to the depth buffer im-
age. Similarly, in the preprocessing of the sketch image, we
resize it to 300×300 resolution, and employ thinning trans-
formation and Gaussian filtering.

After preprocessing, OPHOG divides a given image into
cells using a regular sliding window determined by the spa-
tial level. The window sizew and stride sizesare defined by
the image sizen and spatial levell as follows:

w= n/2l , s= w/2. (4)

Moreover, the number of cells at levell becomes(2l+1−1)2.

The OPHOG feature is obtained by concatenating all of
the orientation histograms calculated for each cell. The ori-
entation histogram is constructed by voting gradient magni-
tude to the corresponding orientation bin. The gradient mag-
nitudeg and orientationθ are defined as follows:

g(x,y) =
√

fx(x,y)2+ fy(x,y)2, (5)

θ(x,y) = tan−1 fx(x,y)
fy(x,y)

, (6)

where

fx(x,y) = L(x+1,y)−L(x−1,y),

fy(x,y) = L(x,y+1)−L(x,y−1),

andL(x,y) denotes the image value at pixel(x,y).

Finally, to decrease the influence of the noise in a sketch
image, we transform the OPHOG feature vector into its rank
order vector and normalize the rank order vector usingℓ2
normalization.

During implementation, we set the number of histogram
bins to 40 and limit the number of levels to 3.

For comparing a sketch image to a 3D model, we calculate
the minimum Euclidean distance, which is denoted by the
following equation:

d(s,m) = min
i=1,··· ,102

||v(s)−v(m)
i ||, (7)

wherev(s) is the feature vector of sketch images, andv(m)
i

denotes the feature vector of theith depth buffer image ren-
dered from 3D modelm.

We also propose the extended manifold ranking
method [ZWG∗04] constrained by the similarity between a
sketch image and a 3D model. In the following, we call this
method Similarity Constrained Manifold Ranking (SCMR).

Suppose we have feature vectors of 3D modelx1, . . . ,xn.
SCMR aims to assign to each feature vectorxi a ranking
scorer i which reflects the non linear structure of the data
manifold. To reflect the data relations represented with the
affinity matrixW within the ranking scores, we defined the
following cost function:

1
2

n

∑
i, j=1

(
r i√
Dii

− r j√
D j j

)2

Wi j , (8)

whereDii = ∑ j Wi j .

To preserve the similarity between a query sketch-image
and a target 3D model in the ranking score, we add the fol-
lowing fitting constraint term:

n

∑
i=1

(r i − pi)
2, (9)

wherepi = exp(−d(s,mi)
2/σ2) is the similarity between the

query sketch-image andith target 3D model.

The optimal ranking score is obtained by minimizing fol-
lowing cost function:

E(r) =
1
2

n

∑
i, j=1

(
r i√
Dii

− r j√
D j j

)2

Wi j +µ
n

∑
i=1

(r i − pi)
2,

(10)
whereµ> 0 is a regularization parameter.

DifferentiatingE(r) with respect tor and rearranging, we
obtain

r = (I −αM)−1p, (11)

where M = D−1/2WD−1/2, r = [r1, . . . , rn]
T,

p = [p1, . . . , pn]
T, andα ∈ [0,1) is a tuning parameter.

Clearly, the matrix(I −αM)−1 can be calculated off-line.
The ranking score can be obtained by simple matrix-vector
multiplication.

In SCMR, we use Depth Buffered Super-Vector Coding,
which we propose for the large scale comprehensive 3D
shape retrieval track as the feature vector for a 3D model.
Furthermore, we calculate the affinity matrix using a locally
constrained diffusion process [YKTL09].

5.4. BOF-JESC Based Descriptor, by C. Zou , H. Fu,
and J. Liu

The proposed mid-level feature descriptor BOF-JESC fol-
lows the bag-of-features framework and employs a junction-
based extended shape context to characterize the local de-
tails within the four concentric circles centered at key-
points. BOF-JESC extracts a global histogram for each im-
age im (im denotes a binary image obtained from a query
sketch/model view in this work). Edge point location in a
local patch of BOF-JESC is quantized into 40 bins of a log-
polar coordinate system with the radius set to 0.075, 0.15,
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(a) (b)
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q

Figure 6: Illustration for the junction-based extended shape
context feature descriptor. Two local patches on a junction
of a query sketch and a model view are shown in (a) and (b),
respectively.

0.25 and 0.35 ofRim (Rim =
√

W ∗H whereW andH is the
width and height of the bounding box ofim). In BOF-JESC,
the circle with the shortest radius within a local patch is di-
vided into four bins (as shown in Fig.6), which comes from
the facts that the bins with small areas are more sensitive to
the statistics of the edge points.

The 40 dimensional local feature of BOF-JESC has the
following characteristics:

• BOF-JESC selects all the junctions (we uses the method
in [MAFM08] to extract the junctions inim, and the points
with degree one, e.g. the pointp in Fig.6a, are also treated
as junctions), and the mid-points in the lines connecting
two adjacent junctions (e.g. the pointq in Fig. 6a) into the
key-point set to generate local features;

• BOF-JESC aligns the reference axis withθ = 0 of the log-
polar coordinate system to the average direction of the
tangent lines of the ten nearest points in the longest edge
connecting the corresponding key-point, this step obtains
a rotation invariance;

• BOF-JESC quantizes the edge points on the boundary of
two neighboring bins into the bin with a greater angle (rel-
ative to the the reference axis in the anti-clockwise direc-
tion);

• BOF-JESC normalizes a 40 dimensional local feature
with ℓ1-norm regularization.

After the local features based on key-points are extracted
from all the model views in a database, BOF-JESC employs
K-means to obtaind “visual words” and finally builds a
globalℓ2-normalized histogram (i.e. ad dimensional feature
vector) for each model view in the off-line stage.

5.4.1. Implementation

We sample 42 views for each 3D model uniformly on the
unit viewpoint sphere. The vocabulary is obtained by the fol-
lowing steps: 1) concentrating the local features of all the
model views in the database, 2) sampling 1 million local
features from concentrated features, 3) utilizing KNN to ob-
tain N words. The query-to-model distance metric is based

on the nearest neighbor (NN) strategy, which finds the clos-
est view to the query in the feature space, and treats such a
minimum query-to-view distance as the query-to-model dis-
tance. The vocabulary sizes are set to 600, 800, 1000, and
1200. Besides the standard framework of the bag-of-feature
method using k-means, we also evaluate the performance of
the Fisher Vector [PLSP10] combined with JESC features.

6. Results

In this section, we perform a comparative evaluation of the
12 runs of the 6 methods submitted by 4 groups. We measure
retrieval performance based on the 7 metrics mentioned in
Section3: PR, NN, FT, ST, E, DCG and AP.

As described in Section2, the complete query sketch
dataset is divided into “Training” and “Testing” datasets,
which is to accustom to machine learning-based retrieval al-
gorithms. To provide complete reference performance data
for both learning-based methods and non-learning based ap-
proaches (like all the 6 participating methods), we evalu-
ate the submitted results on both “Training” and “Testing”
datasets, as well as the complete sketch dataset. Figure7 and
Table1 compare the participating methods in terms of the
7 performance metrics on the above three datasets, respec-
tively.

As shown in the aforementioned figure and table, Tat-
suma’s SCMR-OPHOG performs best, followed by their
OPHOG, while the overall performance of the top meth-
ods from other groups are very close. We can see that
other groups could catch up with OPHOG in terms of over-
all performance; but after employing a manifold ranking
method SCMR, Tatsuma’s group achieved much better per-
formance. For example, compared with OPHOG, SCMR-
OPHOG has a gain of 77.3%, 74.5%, 52.94%, 10.3%,
and 116.4% in FT, ST, E, DCG and AP, respectively.
However, compared to the performance obtained in the
SHREC’12 and SHREC’13 sketch-based 3D model retrieval
tracks [LSG∗12] [LLG∗13], the performance of all the par-
ticipants has decreased sharply due to much more challeng-
ing data in the new benchmark. It is also worth to pay more
attention to the scalability issues when developing sketch-
based 3D retrieval algorithms, especially for large-scale re-
trieval applications. More details about the retrieval perfor-
mance with respect to different classes for each participating
method can be found in the track homepage [SHR14].

In addition, we have an approximate efficiency perfor-
mance comparison by asking participants to provide tim-
ing information. The average response time per query on
the “Testing” dataset based on a modern computer is com-
pared in Table2. Obviously, BF-fDSIFT is the most efficient,
followed by BOF-JESC and SBR-VC (α = 1

2). OPHOG,
SCMR-OPHOG and SBR-VC (α = 1) are comparable in
terms of speed, while CDMR has the by order of magni-
tude highest time consumption, thus it has more space for

c© The Eurographics Association 2014.
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(c) Complete benchmark
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Figure 7: Precision-Recall diagram performance comparisons on different datasets of the SHREC’14 Sketch Track Benchmark
for the 12 runs of the 4 participating groups.

further improvement in this regard. We believe that the tim-
ing information is useful for an approximate comparison of
the runtime requirements of the algorithms.

Finally, we classify all participating methods with respect
to the techniques employed. Three groups (Furuya, Tatsuma
and Zou) utilize local features while one group (Li) employs
a global feature. Two (Furuya and Zou) of the three meth-
ods based on local features apply the Bag-of-Features frame-
work while Manifold Ranking is also used in two (Furuya
and Tatsuma) of the three local feature-based algorithms.

7. Conclusions

In conclusion, this large scale sketch-based retrieval track
is to further foster this challenging and interesting research
direction encouraged by the success of SHREC’12 and
SHREC’13 sketch-based 3D shape retrieval tracks. Though
the benchmark is even more challenging, we still have 4
groups who have successfully participated in the track and
contributed 12 runs of 6 methods. This track provides a com-
mon platform to solicit current sketch-based 3D model re-
trieval approaches in terms of this large scale retrieval sce-

nario. It also helps us identify state-of-the-art methods as
well as future research directions for this research area.

We have noticed that the obtained retrieval performance
is far from satisfactory and existing sketch-based retrieval
methods drop apparently when scaled to a very large collec-
tion. Therefore, we identify the future direction of this re-
search area is developing more robust algorithms which are
scalable to different sizes and diverse types of sketch queries
and models. To achieve this, we recommend utilizing tech-
niques from other related disciplines, such as machine learn-
ing and pattern recognition, as well as developing more pow-
erful local features to improve the retrieval performance. We
also hope that the large scale sketch retrieval benchmark will
become a useful reference for researchers in this community.
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Table 1: Performance metrics comparison on the SHREC’14 Sketch Track Benchmark.

Participant Method NN FT ST E DCG AP
Training dataset

Furuya

BF-fGALIF 0.113 0.050 0.079 0.036 0.321 0.045
CDMR (σSM=0.1,α=0.6) 0.069 0.046 0.074 0.031 0.308 0.048
CDMR (σSM=0.1,α=0.3) 0.104 0.055 0.087 0.039 0.324 0.053
CDMR (σSM=0.05,α=0.6) 0.085 0.058 0.094 0.040 0.325 0.060
CDMR (σSM=0.05,α=0.3) 0.109 0.057 0.090 0.041 0.329 0.055

Li
SBR-VC (α=1) 0.097 0.050 0.081 0.038 0.320 0.050
SBR-VC (α = 1

2) 0.094 0.047 0.077 0.035 0.316 0.046

Tatsuma
OPHOG 0.158 0.066 0.097 0.051 0.340 0.060
SCMR-OPHOG 0.158 0.118 0.172 0.078 0.375 0.132

Zou

BOF-JESC (Words800_VQ) 0.107 0.043 0.068 0.031 0.312 0.042
BOF-JESC (Words1000_VQ) 0.101 0.040 0.064 0.028 0.307 0.039
BOF-JESC (FV_PCA32_Words128) 0.099 0.040 0.062 0.027 0.304 0.038

Testing dataset

Furuya

BF-fGALIF 0.115 0.051 0.078 0.036 0.321 0.044
CDMR (σSM=0.1,α=0.6) 0.065 0.046 0.075 0.031 0.308 0.047
CDMR (σSM=0.1,α=0.3) 0.100 0.056 0.087 0.039 0.325 0.052
CDMR (σSM=0.05,α=0.6) 0.081 0.058 0.094 0.040 0.326 0.060
CDMR (σSM=0.05,α=0.3) 0.109 0.057 0.089 0.041 0.328 0.054

Li
SBR-VC (α=1) 0.095 0.050 0.081 0.037 0.319 0.050
SBR-VC (α = 1

2) 0.083 0.047 0.075 0.035 0.315 0.046

Tatsuma
OPHOG 0.160 0.067 0.099 0.052 0.341 0.061
SCMR-OPHOG 0.160 0.115 0.170 0.079 0.376 0.131

Zou

BOF-JESC (Words800_VQ) 0.086 0.043 0.068 0.030 0.310 0.041
BOF-JESC (Words1000_VQ) 0.082 0.038 0.062 0.027 0.304 0.037
BOF-JESC (FV_PCA32_Words128) 0.089 0.038 0.060 0.026 0.302 0.036

Complete benchmark

Furuya

BF-fGALIF 0.114 0.050 0.079 0.036 0.321 0.045
CDMR (σSM=0.1,α=0.6) 0.068 0.046 0.074 0.031 0.308 0.048
CDMR (σSM=0.1,α=0.3) 0.102 0.055 0.087 0.039 0.324 0.053
CDMR (σSM=0.05,α=0.6) 0.084 0.058 0.094 0.040 0.325 0.060
CDMR (σSM=0.05,α=0.3) 0.109 0.057 0.090 0.041 0.329 0.054

Li
SBR-VC (α=1) 0.096 0.050 0.081 0.038 0.319 0.050
SBR-VC (α = 1

2) 0.090 0.047 0.077 0.035 0.316 0.046

Tatsuma
OPHOG 0.159 0.066 0.098 0.051 0.341 0.061
SCMR-OPHOG 0.158 0.117 0.171 0.078 0.376 0.132

Zou

BOF-JESC (Words800_VQ) 0.099 0.043 0.068 0.031 0.311 0.042
BOF-JESC (Words1000_VQ) 0.094 0.039 0.063 0.028 0.306 0.039
BOF-JESC (FV_PCA32_Words128) 0.095 0.039 0.061 0.027 0.303 0.037
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